Enhanced P-Sensitive K-Anonymity Models for Privacy Preserving Data Publishing

نویسندگان

  • Xiaoxun Sun
  • Hua Wang
  • Jiuyong Li
  • Traian Marius Truta
چکیده

Publishing data for analysis from a micro data table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the k-anonymity model recently. In this paper, we propose two new privacy protectionmodels called (p, α)-sensitive k-anonymity and (p, α)-sensitive k-anonymity, respectively. Different from previous the p-sensitive k-anonymity model, these new introduced models allow us to release a lot more information without compromising privacy. Moreover, we prove that the (p, α)-sensitive and (p, α)-sensitive k-anonymity problems are NP-hard. We also include testing and heuristic generating algorithms to generate desired micro data table. Experimental results show that our introduced model could significantly reduce the privacy breach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes

Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing...

متن کامل

(p+, α)-sensitive k-anonymity: A new enhanced privacy protection model

Publishing data for analysis from a microdata table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the kan...

متن کامل

Privacy Preserving Data Publishing Based on k-Anonymity by Categorization of Sensitive Values

In many organizations large amount of personal data are collected and analyzed by the data miner for the research purpose. However, the data collected may contain sensitive information which should be kept confidential. The study of Privacypreserving data publishing (PPDP) is focus on removing privacy threats while, at the same time, preserving useful information in the released data for data m...

متن کامل

A Survey of Privacy Preserving Data Publishing using Generalization and Suppression

Nowadays, information sharing as an indispensable part appears in our vision, bringing about a mass of discussions about methods and techniques of privacy preserving data publishing which are regarded as strong guarantee to avoid information disclosure and protect individuals’ privacy. Recent work focuses on proposing different anonymity algorithms for varying data publishing scenarios to satis...

متن کامل

Hybrid Approach for Data Publishing Using Privacy Preservation Techniques

Now a day’s governmental and nongovernmental organization wants to share their information for the purpose of knowledge discovery. When the data’s are shared individuals personal data or sensitive data which should not be known to others. Eg. Medical record, voters list, census data. This may leads a latest research field called Privacy preserving data mining. To address these issues, released ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trans. Data Privacy

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008